Most tees, rough and fairways are TifTurf Bermuda grass. Greens are A-1/A-4 bentgrass mix, although the practice green also has L-93 and G-2 in some sections and that practice green is also divided into three sections, each with different rootzone mixes.

I want you to know that we at Cornell recognize and greatly appreciate the valuable contributions your industry and turf managers make to the citizens of New York as environmental stewards. In addition to being knowledgeable and conscientious about integrated pest management, your industry provides recreational opportunities, preserves open green space, provides wildlife habitats, and prevents soil erosion. We applaud those efforts.

I also wish to express my sincere appreciation for the close working relationship between Cornell and the turfgrass industry. Your support of our extension and research programs is vital to the program’s success and one of the most valued partnerships in the college.

In closing, let me reiterate my commitment to the College’s future relationship with the turfgrass industry. We will continue to support turf managers as environmental stewards with research, education and extension. We will help your members educate the public on the value of the turf industry to the environment and the economy of New York. These shared values with Cornell’s Land Grant mission are vital to both of us and another reason why this current situation is so difficult.

I trust we can weather the current strain in the relationship between Cornell’s College of Agriculture and Life Sciences and members of the turfgrass industry produced by this unfortunate incident so we can move forward with the same positive momentum we have had all worked so hard to build and sustain in the past. We look forward to solving current difficulties so we can continue to grow together.

Please contact my office with ideas as to when we might meet and who should be involved.

Sincerely,

Susan A. Henry, Ph.D.
The Ronald P. Lynch Dean
College of Agriculture and Life Sciences

Farmlinks

A Remarkable Place

We spent one more night and played golf again the following morning. For turfgrass managers, Pursell Farms and Farmlinks Golf Club really are a 3,500 acre recreation and education facility, as advertised on their website. Farmlinks is a remarkable place and the products of the sponsoring companies are not over sold, although one is certainly aware of what companies have made this experience possible. I would encourage anyone who has the opportunity to visit there to do so. Farmlinks is almost an amusement park for golf course superintendents. The combination of sport, turfgrass education, product demonstrations, and Southern hospitality is hard to beat.

Dean Henry

An Aspirin a Day for Heat Stress?

As the summer months progress our cool season turfgrasses begin to experience typical signs of temperature induced decline. This decline is associated with depressed rates of photosynthesis (energy production) due to its inefficiency in fixing carbon at high temperatures into useful energy. However, heat stress produces a multifaceted stress response that involves a number of metabolic activities leading to cell death.

Researchers at Rutgers University have been exploring the heat stress phenomenon for several years and have identified a number of factors that will reduce overall stress. Recently, a study was conducted investigating the application of salicylic acid (SA), the active ingredient in aspirin, for improving heat tolerance of Kentucky bluegrass.

The researchers applied several rates of SA to bluegrass growing in a greenhouse and measured a number of physiological stress responses. They found that there were significant reductions in the amount of free oxygen radicals that indicate the reduction in stress response.

Oxidative damage is well known to be a key aspect of heat stress. Other products, such as cytokinin-based products including seaweed-derived fertilizers, have also been shown in the Rutgers program to reduce injury associated with heat stress. More research is needed to validate the benefits of this approach under field conditions, but the mechanism for improving this stress tolerance appears to be well understood.


Air Cooled

Heat stress and plant moisture management often includes regular light applications of water, often called syringing. Syringing is thought to provide temporary reductions in surface temperature thereby alleviating the stress associated with drought and heat. In southern climates, where heat stress of cool season turfgrasses is orders of magnitude greater than in northern climates, fans for air movement are often used to reduce stress.

Researchers at Auburn University have been investigating the use of syringing and air movement as a means of reducing surface temperatures of creeping bentgrass putting greens. A two-year study was conducted in Auburn, AL investigating the effect of fans alone, syringing alone and fans plus syringing on a creeping bentgrass putting green.

Soil temperatures were reduced significantly by any treatment that included fan use. Syringing alone had little to no effect on soil temperature and in some cases was shown to decrease root length density. Fans plus syringing reduced the time the soil temperature was at or above the critical temperature for injury by two to three hours compared to no cooling or syringing alone.

The use of fans does not receive the attention it deserves as a means of improving heat stress tolerance and it appears, based on this study, that syringing is overrated. A comprehensive cooling program that incorporates watering and air movement will be critical during high temperature periods.


Air Cooled

Will You Be There?

2005 Empire State Green Industry Show
November 25-27, 2005
Rochester Riverside Convention Center, Rochester, NY
www.nysta.org/greenshow/program.htm